Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

InAs/AlSb HEMTs for cryogenic LNAs at ultra-low power dissipation

Identifieur interne : 002C42 ( Main/Repository ); précédent : 002C41; suivant : 002C43

InAs/AlSb HEMTs for cryogenic LNAs at ultra-low power dissipation

Auteurs : RBID : Pascal:11-0409031

Descripteurs français

English descriptors

Abstract

Properties of the InAs/AlSb high electron mobility transistor, essential for the design of a cryogenic low-noise amplifier (LNA) operating at low power dissipation, have been studied. Upon cooling from 300 K to 77 K, the dc transconductance gm was enhanced by 30% at a drain-source voltage VDS of 0.1 V. The gate current leakage showed a strong reduction of the Schottky current component at 77 K. Compared to 300 K, the cut-off frequency fT and maximum oscillation frequency fmax showed a significant improvement at 77 K with a peak fT (fmax) of 167 (142) GHz at VDS = 0.2 V. The suitability of the Sb HEMT for a cryogenic LNA design up to 50 GHz, operating at low dc power dissipation, was investigated through the extraction of the NFtot,min figure of merit. It was found that the best device performance in terms of noise and gain is achieved at a low VDS of 0.16 V resulting in a minimum NFtot,min of 0.6 dB for a frequency of 10 GHz when operating at 77 K. A benchmarking between the Sb HEMT and an InP HEMT has been conducted highlighting the device improvement in noise and gain required to reach today's state-of-the-art cryogenic LNAs.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0409031

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">InAs/AlSb HEMTs for cryogenic LNAs at ultra-low power dissipation</title>
<author>
<name sortKey="Moschetti, Giuseppe" uniqKey="Moschetti G">Giuseppe Moschetti</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology</s1>
<s2>412 96 Göteborg</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>412 96 Göteborg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wadefalk, Niklas" uniqKey="Wadefalk N">Niklas Wadefalk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology</s1>
<s2>412 96 Göteborg</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>412 96 Göteborg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nilsson, Per Ake" uniqKey="Nilsson P">Per-Ake Nilsson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology</s1>
<s2>412 96 Göteborg</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>412 96 Göteborg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Roelens, Yannick" uniqKey="Roelens Y">Yannick Roelens</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute of Electronics, Microelectronics and Nanotechnology, IEMN/CNRS UMR 8520, University of Lille, Av. Poincaré</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Nord-Pas-de-Calais</region>
<settlement type="city">Villeneuve d'Ascq</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Noudeviwa, Albert" uniqKey="Noudeviwa A">Albert Noudeviwa</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute of Electronics, Microelectronics and Nanotechnology, IEMN/CNRS UMR 8520, University of Lille, Av. Poincaré</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Nord-Pas-de-Calais</region>
<settlement type="city">Villeneuve d'Ascq</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Desplanque, Ludovic" uniqKey="Desplanque L">Ludovic Desplanque</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute of Electronics, Microelectronics and Nanotechnology, IEMN/CNRS UMR 8520, University of Lille, Av. Poincaré</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Nord-Pas-de-Calais</region>
<settlement type="city">Villeneuve d'Ascq</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wallart, Xavier" uniqKey="Wallart X">Xavier Wallart</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute of Electronics, Microelectronics and Nanotechnology, IEMN/CNRS UMR 8520, University of Lille, Av. Poincaré</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Nord-Pas-de-Calais</region>
<settlement type="city">Villeneuve d'Ascq</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Danneville, Francois" uniqKey="Danneville F">Francois Danneville</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute of Electronics, Microelectronics and Nanotechnology, IEMN/CNRS UMR 8520, University of Lille, Av. Poincaré</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Nord-Pas-de-Calais</region>
<settlement type="city">Villeneuve d'Ascq</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dambrine, Gilles" uniqKey="Dambrine G">Gilles Dambrine</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute of Electronics, Microelectronics and Nanotechnology, IEMN/CNRS UMR 8520, University of Lille, Av. Poincaré</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Nord-Pas-de-Calais</region>
<settlement type="city">Villeneuve d'Ascq</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bollaert, Sylvain" uniqKey="Bollaert S">Sylvain Bollaert</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute of Electronics, Microelectronics and Nanotechnology, IEMN/CNRS UMR 8520, University of Lille, Av. Poincaré</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Nord-Pas-de-Calais</region>
<settlement type="city">Villeneuve d'Ascq</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grahn, Jan" uniqKey="Grahn J">Jan Grahn</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology</s1>
<s2>412 96 Göteborg</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>412 96 Göteborg</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0409031</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0409031 INIST</idno>
<idno type="RBID">Pascal:11-0409031</idno>
<idno type="wicri:Area/Main/Corpus">002971</idno>
<idno type="wicri:Area/Main/Repository">002C42</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-1101</idno>
<title level="j" type="abbreviated">Solid-state electron.</title>
<title level="j" type="main">Solid-state electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium antimonides</term>
<term>Benchmarking</term>
<term>Binary compound</term>
<term>Cooling</term>
<term>Cooling system</term>
<term>Cryogenic circuit</term>
<term>Cut off frequency</term>
<term>Drain voltage</term>
<term>Energy dissipation</term>
<term>Figure of merit</term>
<term>Gain</term>
<term>Gate current</term>
<term>High electron mobility transistor</term>
<term>Indium phosphide</term>
<term>Leakage current</term>
<term>Low noise amplifier</term>
<term>Low power</term>
<term>Low-power electronics</term>
<term>Microwave</term>
<term>Oscillation frequency</term>
<term>Performance evaluation</term>
<term>State of the art</term>
<term>Thermal management (packaging)</term>
<term>Transconductance</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transistor mobilité électron élevée</term>
<term>Amplificateur faible bruit</term>
<term>Electronique faible puissance</term>
<term>Circuit cryogénique</term>
<term>Puissance faible</term>
<term>Dissipation énergie</term>
<term>Système refroidissement</term>
<term>Refroidissement</term>
<term>Transconductance</term>
<term>Tension drain</term>
<term>Courant grille</term>
<term>Courant fuite</term>
<term>Fréquence coupure</term>
<term>Fréquence oscillation</term>
<term>Facteur mérite</term>
<term>Evaluation performance</term>
<term>Gain</term>
<term>Benchmarking</term>
<term>Etat actuel</term>
<term>Hyperfréquence</term>
<term>Antimoniure d'aluminium</term>
<term>Composé binaire</term>
<term>Phosphure d'indium</term>
<term>Gestion température packaging électronique</term>
<term>AlSb</term>
<term>InP</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Properties of the InAs/AlSb high electron mobility transistor, essential for the design of a cryogenic low-noise amplifier (LNA) operating at low power dissipation, have been studied. Upon cooling from 300 K to 77 K, the dc transconductance g
<sub>m</sub>
was enhanced by 30% at a drain-source voltage V
<sub>DS</sub>
of 0.1 V. The gate current leakage showed a strong reduction of the Schottky current component at 77 K. Compared to 300 K, the cut-off frequency f
<sub>T</sub>
and maximum oscillation frequency f
<sub>max</sub>
showed a significant improvement at 77 K with a peak f
<sub>T</sub>
(f
<sub>max</sub>
) of 167 (142) GHz at V
<sub>DS</sub>
= 0.2 V. The suitability of the Sb HEMT for a cryogenic LNA design up to 50 GHz, operating at low dc power dissipation, was investigated through the extraction of the NF
<sub>tot,min</sub>
figure of merit. It was found that the best device performance in terms of noise and gain is achieved at a low V
<sub>DS</sub>
of 0.16 V resulting in a minimum NF
<sub>tot,min</sub>
of 0.6 dB for a frequency of 10 GHz when operating at 77 K. A benchmarking between the Sb HEMT and an InP HEMT has been conducted highlighting the device improvement in noise and gain required to reach today's state-of-the-art cryogenic LNAs.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-1101</s0>
</fA01>
<fA03 i2="1">
<s0>Solid-state electron.</s0>
</fA03>
<fA05>
<s2>64</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>InAs/AlSb HEMTs for cryogenic LNAs at ultra-low power dissipation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MOSCHETTI (Giuseppe)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WADEFALK (Niklas)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NILSSON (Per-Ake)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ROELENS (Yannick)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>NOUDEVIWA (Albert)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>DESPLANQUE (Ludovic)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>WALLART (Xavier)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>DANNEVILLE (Francois)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>DAMBRINE (Gilles)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>BOLLAERT (Sylvain)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>GRAHN (Jan)</s1>
</fA11>
<fA14 i1="01">
<s1>Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology</s1>
<s2>412 96 Göteborg</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Electronics, Microelectronics and Nanotechnology, IEMN/CNRS UMR 8520, University of Lille, Av. Poincaré</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA20>
<s1>47-53</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2888</s2>
<s5>354000500184650090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0409031</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid-state electronics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Properties of the InAs/AlSb high electron mobility transistor, essential for the design of a cryogenic low-noise amplifier (LNA) operating at low power dissipation, have been studied. Upon cooling from 300 K to 77 K, the dc transconductance g
<sub>m</sub>
was enhanced by 30% at a drain-source voltage V
<sub>DS</sub>
of 0.1 V. The gate current leakage showed a strong reduction of the Schottky current component at 77 K. Compared to 300 K, the cut-off frequency f
<sub>T</sub>
and maximum oscillation frequency f
<sub>max</sub>
showed a significant improvement at 77 K with a peak f
<sub>T</sub>
(f
<sub>max</sub>
) of 167 (142) GHz at V
<sub>DS</sub>
= 0.2 V. The suitability of the Sb HEMT for a cryogenic LNA design up to 50 GHz, operating at low dc power dissipation, was investigated through the extraction of the NF
<sub>tot,min</sub>
figure of merit. It was found that the best device performance in terms of noise and gain is achieved at a low V
<sub>DS</sub>
of 0.16 V resulting in a minimum NF
<sub>tot,min</sub>
of 0.6 dB for a frequency of 10 GHz when operating at 77 K. A benchmarking between the Sb HEMT and an InP HEMT has been conducted highlighting the device improvement in noise and gain required to reach today's state-of-the-art cryogenic LNAs.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03G02A2</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F06A</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Transistor mobilité électron élevée</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>High electron mobility transistor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Transistor movibilidad elevada electrones</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Amplificateur faible bruit</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Low noise amplifier</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Amplificador bajo ruido</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Electronique faible puissance</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Low-power electronics</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Circuit cryogénique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Cryogenic circuit</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Circuito criogénico</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Puissance faible</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Low power</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Potencia débil</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Dissipation énergie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Energy dissipation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Disipación energía</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Système refroidissement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Cooling system</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sistema enfriamiento</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Refroidissement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Cooling</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Enfriamiento</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Transconductance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Transconductance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Transconductancia</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Tension drain</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Drain voltage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Tensión dren</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Courant grille</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Gate current</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Corriente rejilla</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Courant fuite</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Leakage current</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Corriente escape</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Fréquence coupure</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Cut off frequency</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Frecuencia corte</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Fréquence oscillation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Oscillation frequency</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Frecuencia oscilación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Facteur mérite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Figure of merit</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Factor mérito</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Gain</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Gain</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Ganancia</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Benchmarking</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Benchmarking</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Evaluación comparativa</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Etat actuel</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>State of the art</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estado actual</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Hyperfréquence</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Microwave</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Hiperfrecuencia</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Antimoniure d'aluminium</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Aluminium antimonides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Gestion température packaging électronique</s0>
<s5>46</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Thermal management (packaging)</s0>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>AlSb</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>21</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>21</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>21</s5>
</fC07>
<fN21>
<s1>283</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002C42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0409031
   |texte=   InAs/AlSb HEMTs for cryogenic LNAs at ultra-low power dissipation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024